Il frattale quadratico di Koch, che si vede in figura, eseguito con la tecnica L-System è così costruito:
Dati iniziali:
angolo= 90°
|
lato= numero pixel prescelto (esempio: 400 pixel)
| axiom: F+F+F+F+
| Viene tracciato un quadrato di lato uguale a quello assegnato e quindi si ruota di 90° in verso antiorario
| Ripeti:
| lato:= lato/4 | Il lato diventa un quarto del precedente
| Sostituzione: | F:= F-F+F+FF-F-F+F
(Avanza, ruota di 90° in senso orario, avanza, ruota di 90° in senso antiorario, avanza, ruota di 90° in senso antiorario, avanza,avanza, ruota di 90° in senso orario, avanza, ruota di 90° in senso orario,avanza, ruota di 90° in senso antiorario,avanza).
| Sostituendo ad ogni F questa stringa un segmento orizzontale, ad esempio, viene sostituito dalla seguente spezzata: ![]() Fino a quando il lato diventa minore di un numero assegnato.
| |
Osserviamo ora passo per passo la formazione del frattale quadratico di Koch:
Cliccando su "Successivo" si può osservare lo sviluppo del frattale per i primi quattro passi. Cliccando su "Precedente" si può tornare indietro. Le immagini assumono diverse tonalità se imponiamo una scelta di colore a seconda del numero di passi. CARATTERISTICHE
|
![]() |
|
| |
©2002 - 2007 www.webfract.it